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Abstract : 

The present work is aimed at the thermoelastic interactions in a two dimensional homogeneous, 

transversely isotropic thermoelastic solids with two temperatures in the context of Green - Naghdi model of 

type-II due to time harmonic sources.  The Hankel transform has been employed to find the general 

solution to the field equations. Concentrated normal force , normal force over the circular region and   

concentrated thermal source and thermal source over the circular region have been taken to illustrate the 

application of the approach. The components of displacements, stresses and conductive temperature 

distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical 

domain by using numerical inversion technique. Numerically simulated results are depicted graphically. A 

comparison is made by showing the effect of two temperature, one temperature and anisotropy on the 

components of normal displacement, normal stress, tangential stress and conductive temperature. 

 Key words: Transversely isotropic, thermoelastic, time harmonic sources, Hankel transform, concentrated 

and distributed sources. 

1.Introduction: 

During the past few decades , widespread attention has been given to thermoelasticity theories that admit a 

finite speed for the propagation of thermal signals. In contrast to the conventional theories based on 

parabolic-type heat equation , these theories are referred to as generalized theories. Thermoelasticity with 

two temperatures is  one of the non classical theories of thermomechanics of elastic solids. The main 

difference of this theory with respect to the classical one is a thermal dependence. Green and 

Naghdi(1991,1992,1993)  developed three models for generalized thermoelasticity of homogeneous isotropic 

materials, which are labelled as models I, II, and III. The nature of these theories is such that when the 

respective theories are linearised , Model I reduces to the classical heat conduction theory( based on 

Fourier’s law). The linearised version of model II and III permits propagation of waves at finite speed. 

Model II, in particular exhibits a feature that is not present in other established thermoelastic models as it 

does not sustain dissipation of thermal energy (Green and Naghdi 1993). In this model the constitutive 

equations are derived by starting with the reduced energy equation and by including the thermal 

displacement gradient among other constitutive variables.   

 

Green-Naghdi’s third  model (GN-III) admits dissipation of energy. In this model the constitutive equations 

are derived by starting with the reduced energy equation, where the thermal displacement gradient in 

addition to the temperature gradient , are among the constitutive variables. This theory was pursued  by 

many authors.. Chandrasekharaiah and Srinath (2000) discussed the thermoelastic waves without energy 

dissipation in an unbounded body with a spherical cavity. 
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Youssef(2006), constructed a new theory of generalized thermoelasticity by taking into account  two-

temperature generalized thermoelasticity theory for a homogeneous and isotropic body without energy 

dissipation and obtained the variational  principle(Youssef 2013). Youssef et al. (2007)  investigated State 

space approach of  two temperature generalized thermoelasticity of infinite body with a spherical cavity 

subjected to different types of thermal loading. Chen and Gurtin (1968), Chen et al. (1968) and Chen et al. 

(1969) have formulated a theory of heat conduction in deformable bodies which depends upon two distinct 

temperatures, the conductive temperature  and the thermo dynamical temperature T. For time 

independent situations, the difference between these two temperatures is proportional to the heat supply, 

and in absence of heat supply, the two temperatures are identical. For time dependent problems, the two 

temperatures are different, regardless of the presence of heat supply. The two temperatures T,  and   the 

strain are found to have representations in the form of a travelling wave plus  a response, which occurs 

instantaneously throughout the body. Several researchers studied various problems involving two 

temperature.e.g. (Warren and Chen 1973;Quintanilla 2002; Youssef AI-Lehaibi 2007;  Youssef AI -Harby 

2007; Kaushal, Kumar and Miglani 2010;  Kumar, Sharma and Garg 2014;Sharma and Marin2013;Sharma and 

Bhargav 2014; Sharma, Sharma and Bhargav 2013;Sharma and Kumar2013). The axisymmetric problems has 

been studied during the past  decade by many authors.e.g. (Kumar and Pratap 2009; Sharma , Kumar and 

Ram2012 ;Kumar and Kansal 2013; Kumar,Kumar and Gourla2013 ). Inspite of these studies no attempt has 

been made to study the axisymmetric deformation  in transversely isotropic medium with two temperature 

and without energy dissipation in frequency domain.  

                    

In the present investigation, a two dimensional axisymmetric problem in transversely isotropic 

thermoelastic solid without energy dissipation and with two temperature in frequency domain is 

investigated . The components of normal displacement, normal stress, tangential stress and conductive 

temperature subjected to concentrated normal force , normal force over the circular region and 

concentrated  thermal  source along with thermal source over the circular region are obtained by using  

Hankel transforms. Numerical computation is performed by using a numerical inversion technique and the 

resulting quantities are shown graphically.                                    

2.Basic Equations  

Following  Youssef (2011)the constitutive relations and field equations in absence of  body forces and heat 

sources  are: 

                                                                          (1) 

                                                                      (2) 

                                                                  (3) 

where   

                                                                                   (4) 

                                                                                     (5) 

                                                             (6) 
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Here  

 are elastic parameters,  is the thermal tensor,  is the 

thermodynamic  temperature, is the reference temperature,  are the components of stress 

tensor,   are the components of strain tensor,  are the displacement components,  is the density,  

is the specific heat,  is the materialistic constant,  are the two temperature parameters,  is the 

coefficient of linear thermal expansion. 

 

3. Formulation of the problem 

We consider a homogeneous transversely isotropic , thermoelastic body initially at uniform temperature 

. We take a cylindrical polar co-ordinate system  with symmetry about  –axis. As the problem 

considered is plane axisymmetric, the field component  , and  are independent of   

We have used appropriate transformation following Slaughter(2002) on the set of equations (1)-(3) to derive 

the equations for transversely isotropic  thermoelastic  solid  without energy dissipation and with two 

temperature and restrict our analysis to the two dimensional problem  with  , we obtain 

                                                                                                                                                       
(7) 

 

                                                                                                                                                   (8)                                                                                                                               

         
(9) 

Constitutive relations are 

  

  

  

                                                                                                       

(10) 

Where 
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 ,   ,     ,    ,  

 

 

  ,           

( ,  2  

Assume the time harmonic behaviour as                    

(11) 

To facilitate the solution, the following dimensionless quantities are introduced 

  ,          ,    ,  ,   ,     ,   

  ,  ,  ,                                                                                       (12) 

in equations (7)-(9) and after that suppressing the primes and   using (11) and applying  Hankel transforms  

defined by 

                                                                                             (13) 

 on  the resulting quantities, we obtain 

                                           

(14) 

                            

(15) 

                                      

(16) 

 Where   ,   ,  ,   ,      ,     

 

After solution of the equations (14)-(16), using the radiation condition  that  , ,   

,yields 

                                                                                          (17) 

                                                                            (18) 

                                                                               (19) 

Where   are the roots  of the equation   

                                                                                                    (20) 
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Where A , B, C,D, and E are listed in appendix A  and the  values of coupling constants    and  ,  are 

given in appendix B and   ,i=1,2,3 being arbitrary constants. 

 

4.Applications 

Mechanical forces/ Thermal source acting on the surface 

The boundary conditions  are 

   

  

                                                                                                                         (21) 

  ,    are  well behaved functions 

Here    =0  corresponds to plane boundary  subjected to  normal force and   = 0 

corresponds to plane boundary  subjected to thermal point  force.   

                                                                      

Case 1. Concentrated normal force/ Thermal point source 

When plane boundary is subjected to concentrated normal force/ thermal point  force, then  

,   take the form 

                           (                                (22)                                                         

 is the magnitude of the force applied , is the magnitude of the constant temperature  applied  on 

the boundary and  is the Dirac delta function. 

                                                                                     Using the equations (10), (11)  in the boundary conditions 

(21) and applying the transforms defined by(12)  and (13) and substitute the values of  , ,  from (17)-

(19) in the resulting equations, we obtain the expressions for the components of displacement, stress , and 

conductive temperature in case of concentrated normal force which are given in appendix C and in case of 

thermal point source are these are obtained by replacing   by  and  with , as listed in appendix D    

Case II: Normal force over the circular region/ Thermal source over the circular region 

Let a uniform pressure of total magnitude / thermal source of magnitude  applied over a uniform 

circular region of radius a is obtained by setting  

                                    (23)                                                                

Where  is the Heaviside unit step function. 

Making use of dimensionless quantities defined by (11) and then applying Laplace and Hankel transforms 

defined by (12)-(13) on (23) ,we obtain  

                          (  
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The expressions for the components of displacements, stress and conductive temperature can be obtained 

by replacing  with   and by replacing   with   in equations (C.1)-(C.5)  and in (D.1)-

(D.5) respectively 

 

5.Particular cases 

(i) If , from equations (C.1) (C.5) and from (D.1) (D.5) we obtain the corresponding 

expressions for displacements,  stresses and  temperature change in thermoelastic medium without energy 

dissipation.  

(ii) If we take   , ,  ,  , 

, ,  in equations (C.1) (C.5) and  (D.1) (D.5)  , we 

obtain the corresponding expressions for displacements,  stresses and conductive temperature for isotropic 

thermoelastic solid with two temperature. 

6. Inversion of the transforms 

To obtain the solution of the problem in physical domain, we must invert the transforms in equations (26)-

(30) These expressions are functions of      ,and hence are of  the form (  To get the 

function  in the physical domain,  we invert the Hankel transform using 

 (                                                                         (24) 

           The last step is to calculate the integral in equation (24). The method for evaluating this integral is 

described in Press et al. (1986). It involves the use of Romberg’s integration with adaptive step size. This 

also uses the results from successive refinements of the extended trapezoidal rule followed by extrapolation 

of the results to the limit when the step size tends to zero. 

7.Numerical results and discussion 

Copper material is chosen for the purpose of numerical calculation which is transversely isotropic. Physical 

data for a single crystal of copper is given by 

,   ,    

,           

,   ,    ,                

 ,   Following Dhaliwal and Singh(1980), 

magnesium crystal is chosen for the purpose of  numerical calculation(isotropic solid). In case of 

magnesium crystal like material for numerical calculations, the physical constants used are 

,            ,              

          ,       

 298K,                            
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The values of normal displacement w, normal force stress  , tangential stress  and conductive 

temperature  for a transversely isotropic thermoelastic solid with two temperature  (TIT) , isotropic 

thermoelastic solid with two temperature(IT) , and thermoelastic solid without two temperature (TWT) are 

presented graphically to show the impact of two temperature and anisotropy.  The frequency parameter is 

taken as .  

 i). The solid line corresponds to (IT)  for  =                                                                                     ii) 

small dashed line corresponds to(IT)  for =                                                                                         

iii) solid line with centre symbol circle corresponds to (TWT)  for                                                   

iv) small dashed line with centre symbol diamond corresponds to (TIT) for  6                                                                                                                                                  

7.1 Normal force on the boundary of the half-space 

Case I: Concentrated normal force 

Fig.1 shows the variations of normal displacement w with distance r . The values of w (IT)   are increasing  

with a sharp increase in the initial range ,also values  for)   for  =  are  greater than w (IT)   for 

 =   whereas the trend of variations is ascending oscillatory for (TWT) and (TIT) Fig.2 exhibits 

the variations  of normal stress . It is observed  that values of   (IT)  are decreasing corresponding to 

both the parameters i.e. for  =  and  = with a sharp decrease near the loading surface 

, however the variations follow oscillatory pattern in case of (TIT) and (TWT). Fig.3 shows that variations in 

 are in oscillatory form with difference in magnitude for all the four cases ,whereas  the behaviour of (IT) 

(  =  ) and (TIT) is opposite oscillatory. Fig.4 interprets the behaviour of conductive temperature 

. Near the loading surface there is a sharp decrease in values of  for (IT) (both cases) ,but away from the 

loading surface ,the pattern is oscillatory, however for (TIT) and (TWT) the variations are oscillatory in the 

whole range. 

Case II: Normal force over the circular region 

The trend of variations of  normal displacement w, normal stress , tangential stress  and conductive 

temperature  for normal force over the circular region is similar to concentrated normal force with 

difference in their magnitude. At a first look it seems as mirror image of one another i.e. pattern is similar 

but the corresponding values are different. These variations are shown in figs. (5-8) 

7.2 Thermal source on the boundary of half-space 

Fig.9 shows the variations of normal displacement w with distance r . The values of w (IT)   are decreasing  

with a sharp decrease near the loading surface and also values of w (IT)   for  =  are  greater than 

w (IT)   for  =   whereas the trend of variations is ascending oscillatory for (TWT) and (TIT) 

Fig.10 exhibits the variations  of normal stress . It is observed  that values of   for (IT)(  =  ) 

and (TIT) ,  )are sharply decreasing in the range  and follow oscillatory 

pattern afterwards , also small variations near zero are observed for (IT)(  =  ) whereas the 
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pattern is oscillatory in the whole range for (TWT) Fig.11 shows that variations in  are in oscillatory form 

away from the loading surface for (IT) (  =  )  and (TIT) ,  )whereas near the 

loading surface these have opposite behaviour. Also variations in  ,  for  (IT) (  =  ) and 

(TWT) follow opposite behaviour in the initial range and have small variations near zero in the rest of the 

range. Fig.12. interprets the behaviour of conductive temperature . Near the loading surface there is a 

sharp decrease in values of  for (TIT) ,but away from the loading surface ,the pattern is oscillatory, 

however  the variations for  (IT)(both cases)  and (TWT) are oscillatory in the whole range. 

Case-I: Thermal point source 

Case-II: Thermal source over the circular region 

The trend of variations of normal displacement w, normal stress , tangential stress  and conductive 

temperature  for  thermal source over the circular region is similar to thermal point source with difference 

in their magnitude. The pattern is similar but the corresponding values are different. These variations are 

shown in figs. (12-16) 
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Fig.1.Variation of normal displacement w with distance 

r(concentrated normal force) 

Fig.2.Variation of normal stress  with distance 

r(concentrated normal force) 
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Fig.3. Variation of tangential stress  with distance 

r(concentrated normal force) 

Fig.4. Variation of  conductive temperature  with 

distance r(concentrated normal force) 
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Fig.5.Variation of normal displacement w with distance r 

(normal force over the circular region) 

  

Fig.6. Variation of normal stress  with distance r 

(normal force over the circular region) 
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Fig.7. Variation of tangential stress  with distance r 

(normal force over the circular region) 

Fig.8. Variation of conductive temperature  with 

distance r (normal force over the circular region) 
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Fig.9 Variation of normal displacement w with distance 

r (thermal point source) 

Fig.10 Variation of normal stress  with distance r 

(thermal point source) 
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Fig.11 Variation of tangential stress  with distance r 

(thermal point source) 

Fig.12 Variation of conductive temperature  with 

distance r (thermal point source) 
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Fig.13 Variation of normal displacement w with distance 

r (thermal source over the circular region ) 

Fig.14. Variation of normal stress  with distance 

r(thermal source over the circular region) 
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Fig.15. Variation of tangential stress  with distance r 

(thermal  source over the circular region) 

Fig.16.  Variation of conductive temperature  with 

distance r (thermal source over the circular region) 

 

   

8. conclusion 

From the graphs it is clear that effect of two temperature plays an important part in the study of the 

deformation of the body. Changing the two temperature parameter has a significant impact in the 

deformation of the isotropic body as is observed in the graphs. As r diverse from the point of application of 

the source the components of normal stress, tangential stress and conductive temperature for all types of 

sources ( concentrated normal force / normal force over the circular region/ thermal point source/ thermal 

source over the circular region ) follow an oscillatory pattern. It is observed that the variations of normal 

stress , tangential stress  and conductive temperature  for both mechanical forces (concentrated 

normal force  and  normal force over the circular region) are same and for both thermal sources( thermal 

point source and thermal source over the circular region) are same with difference in magnitude. As the 

disturbances travel through different constituents of the medium , it suffers sudden changes ,resulting in an 

inconsistent/ non- uniform pattern of curves. The results of this problem are very useful in the two 

dimensional problem of dynamic response due to various sources of the transversely isotropic thermoelastic 

solid  with two temperature  which has various geophysical and industrial applications. The problem of 

rotation disks or cylinders has its applications in high-speed cameras, steam and gas turbines, planetary 

landings and in many other domains.  

 

Appendix A 
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Where 

    ,                     

     ,     

Appendix B 

  

    

Where   

  

  

  

  

  

  

Appendix C                                 

 =                                                                  (C.1) 

 =                                                     

(C.2) 

                                                 

(C.3) 

                                                 

(C.4) 

 =                                                         (C.5) 

Where 
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 ,  

1,2,3 

Appendix D    

 =                                                                  (D.1) 

 =                                                     

(D.2) 

                                                 

(D.3) 

                                                 

(D.4) 

 =                                                         (D.5) 
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